Note

On the Degree of Approximation by Bernstein Polynomials

The aim of this note is to show that the novel approach taken in [2] to introduce the Bernstein polynomials can be used to study the degree of approximation of differentiable functions by these polynomials. The idea of [2] is to approximate a smooth function f defined on [0,1] by approximating on a certain closed region the function $U(x, y) \equiv f(x+y)$ satisfying

$$
\frac{\partial U}{\partial x}=\frac{\partial U}{\partial y}, \quad U(x, 0)=f(x)
$$

For each psotive integer N and each $t \in(0,1]$, an approximate solution $u(i h, n k) \equiv u_{i, n}$ is constructed on the grid points (ih, nk) of the set $\{(x, y): 0 \leqslant x, 0 \leqslant y \leqslant t, x+y \leqslant 1\}$ by use of the forward difference scheme

$$
\begin{equation*}
u_{i, n+1}=(1-t) u_{i, n}+t u_{i+1, n}, \quad u_{i, 0}=f(i / N) \tag{1}
\end{equation*}
$$

where $h=1 / N$ and $k=t h$. It is then easy to see that the N th order Bernstein polynomial of f at t is given by

$$
B_{N}(f ; t)=\sum_{i=0}^{N}\binom{N}{i}(1-t)^{N-i} t^{i} f(i / N)=u_{0, N}
$$

Theorem. If a real function f is continuous on $[0,1]$ and has a bounded derivative on $(0,1)$, then for every $t \in[0,1]$ and for $N=1,2, \ldots$,

$$
\left|B_{N}(f ; t)-f(t)\right| \leqslant t \omega\left(f^{\prime} ; 1 / N\right)
$$

where $\omega\left(f^{\prime} ; \cdot\right)$ is the modulus of continuity of f^{\prime} on $(0,1)$.
Proof. For $0 \leqslant n \leqslant N$ and $0 \leqslant i \leqslant N-n$ we set

$$
\begin{equation*}
T_{i, n}=U(i h,(n+1) k)-U(i h, n k)-t[U((i+1) h, n k)-U(i h, n k)] . \tag{2}
\end{equation*}
$$

By use of the mean value theorem and the fact that $U(x, y) \equiv f(x+y)$ we have

$$
T_{i, n}=k f^{\prime}\left(\theta_{1}\right)-t h f^{\prime}\left(\theta_{2}\right)
$$

where $\theta_{1}, \theta_{2} \in(i h+n k,(i+1) h+n k)$. Therefore

$$
\begin{equation*}
\left|T_{i, n}\right| \leqslant t \omega\left(f^{\prime} ; 1 / N\right) / N . \tag{3}
\end{equation*}
$$

If $T_{N}=\max \left\{\left|T_{i, n}\right|: 0 \leqslant n \leqslant N, 0 \leqslant i \leqslant N-n\right\}$, then by use of (1) and (2) it follows easily as in [2] that

$$
\left|f(t)-B_{N}(f ; t)\right|=\left|U(0, N k)-u_{0, N}\right| \leqslant N T_{N}
$$

The desired result then follows from (3).
Lorentz [3, p. 21] obtained the estimate ${ }^{1}$

$$
\begin{equation*}
\left|f(t)-B_{N}(f ; t)\right| \leqslant \frac{3}{4} \omega\left(f^{\prime} ; 1 / \sqrt{N}\right) / \sqrt{N} \quad(N=1,2, \ldots) \tag{4}
\end{equation*}
$$

Since $\omega\left(f^{\prime} ; 1 / \sqrt{N}\right) \leqslant(1+\sqrt{N}) \omega\left(f^{\prime} ; 1 / N\right)$, it follows that

$$
\overline{\lim }_{N \rightarrow \infty} \frac{\omega\left(f^{\prime} ; 1 / \sqrt{N}\right) / \sqrt{N}}{\omega\left(f^{\prime} ; 1 / N\right)} \leqslant 1
$$

and hence for a given $t \in(0,1]$ Lorentz's estimate is essentially at least as good as ours. In fact, if $f(t) \equiv t^{\alpha+1}$, where $0<\alpha<1$, then one can see that Lorentz's result is strictly better. However, if f^{\prime} satisfies a Lipshitz condition of order one on (0,1), then for each $t \in[0,1]$ both estimates are $O(1 / N)$ which cannot be improved to $o(1 / N)$ unless f is linear in view of a theorem of Bajšanski and Bojanić [1].

References

1. B. Bajšanski and R. Bojanić, A note on approximation by Bernstein polynomials, Bull. Amer. Math. Soc. 70 (1964), 675-677.
2. C. W. Groetsch and J. T. King, The Bernstein polynomials and finite differences, Math. Mag. 46 (1973), 280-282.
3. G. G. Lorentz, "Bernstein Polynomials," University of Toronto Press, Toronto, 1953.
C. W. Groetsch
O. Shisha

Department of Mathematics
University of Rhode Island Kingston, Rhode Island 02881

[^0]
[^0]: ${ }^{1}$ Lorentz works in a slightly different setting, but his proof yields (4) in our setting.

